

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I L I}_{\mathbf{I L}}$ Output $\mathbf{I O H}_{\mathbf{O H}} / \mathbf{I O L}$
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
LE	Latch Enable Input (Active HIGH)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	Complementary 3-STATE Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Function Table

Inputs			Output
LE	$\overline{\mathbf{O E}}$	D	$\overline{\mathbf{O}}$
H	L	H	L
H	L	L	H
L	L	X	$\overline{\mathrm{O}}_{0}$
X	H	X	Z

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Immaterial

Functional Description

The 74F533 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable $(\overline{\mathrm{OE}})$ input. When $\overline{\mathrm{OE}}$ is LOW, the buffers are in the bi-state mode. When $\overline{\mathrm{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
V_{CC} Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
3-STATE Output
Current Applied to Output
in LOW State (Max)

ESD Last Passing Voltage (Min)

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	$\mathrm{V}_{\text {cc }}$	Conditions
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage $\quad 10 \% \mathrm{~V}_{\text {CC }}$			0.5	V	Min	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$
I_{IH}	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown (I/O)			0.5	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
${ }_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
$\overline{\mathrm{IOD}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
ILL	Input LOW Current			-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
IozH	Output Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
${ }_{\text {IOzL }}$	Output Leakage Current			-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
Ios	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
I_{zz}	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
${ }^{\text {CCZ }}$	Power Supply Current		41	61	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $D_{n} \text { to } \bar{O}_{n}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & \hline 4.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay LE to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 7.1 \\ & 4.7 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 14.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 8.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 5.9 \\ & 5.6 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.5 \end{gathered}$	ns
$t_{\text {PHZ }}$ tpLZ	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.4 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 6.5 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		Units
		Min	Max	Min	Max	Min	Max	
$\overline{\mathrm{ts}_{\text {S }}(\mathrm{H})}$	Setup Time, HIGH or LOW	2.0		2.0		2.0		ns
$\mathrm{t}_{\text {S }}(\mathrm{L})$	D_{n} to LE	2.0		2.0		2.0		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	3.0		3.0		3.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	D_{n} to LE	3.0		3.0		3.0		ns
${ }^{\mathrm{t}_{W}(\mathrm{H})}$	LE Pulse Width, HIGH	6.0		6.0		6.0		ns

Physical Dimensions inches（millimeters）unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
